

Vol. 18, No. 2, June 2025, pp. 172~182

eISSN: 2502-339X, pISSN: 1979-276X, DOI: https://doi.org/10.30998/faktorexacta.v18i2.26958

Sistem Penunjang Keputusan Penentuan Supplier Toko Sembako Aishar dengan Metode MABAC

Fuad Azril Syamil Bayasef¹, I Made Sugi Ardana²,

^{1,2} Jurusan Teknik Informatika, Fakultas Ilmu Komputer Universitas Pamulang, Indonesia

Article Info

Article history:

Received Dec 13, 2024 Revised Jul 20, 2025 Accepted Aug 01, 2025

Keywords:

MABAC decision support supplier recommendations

ABSTRACT

Objectively selecting the right supplier is a challenge for Aishar grocery store. When faced with several alternative suppliers, it takes considerable time to determine which one to choose. Four criteria are used for selection: quality, delivery time, price, and service, with the highest weighting in descending order. Quality is given the highest weighting because it directly impacts customer loyalty, while service is given the lowest score because it is only related to the store. The MABAC method can be used to objectively and quickly select alternatives. To facilitate implementation, a website-based application was created following the SDLC stages. Application testing was conducted using the blackbox testing method, comparing manual calculations with the application's output. The application is designed to be flexible and setup-based so that changes in criteria or weighting can still be applied. The example used in this study involved selecting five suppliers using four criteria. After assessing each supplier's criteria, alternative supplier A3, Ibu Ayin, was selected with a score of 40.0782.

172

Corresponding Author:

I Made Sugi Ardana,

Jurusan Teknik Informatika Fakultas Ilmu Komputer,

Universitas Pamulang,

Jl. Surya Kencana No.1, Pamulang, Kota Tangerang Selatan.

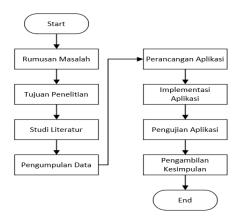
Email: sugiardana@gmail.com

1. PENDAHULUAN

Pada era globalisasi, persaingan antar perusahaan menjadi semakin ketat. Konsumen tidak lagi hanya menginginkan produk yang berkualitas, melainkan juga menuntut pelayanan yang tepat waktu dan harga yang bersaing. *Supplier* sebagai pihak penyedia barang sangat berperan penting dalam menentukan pelayanan yang diberikan kepada konsumen toko. Untuk itu, sebagai pemilik toko perlu selektif dalam memilih *supplier*. Saat ini toko sembako Aishar masih menemukan kendala dalam melakukan pemilihan *supplier* yang tepat secara obyektif dan cepat. Pemilihan *supplier* yang tepat dapat membantu kelancaran proses produksi dan membuat perusahaan mampu menghasilkan produk dengan kualitas baik yang sesuai dengan keinginan konsumen [1].

Supplier memiliki peran yang penting baik bagi perusahaan ataupun individu karena supplier menyediakan bahan baku. Sehingga dibutuhkan perhitungan supaya perusahaan memperoleh supplier sesuai dengan kebutuhan dan mendapatkan hasil terbaik. Jika terjadi kesalahan pada pemilihan supplier akan mendapatkan dampak negatif terhadap perusahaan [2].

Penentuan *supplier* untuk toko sembako Aishar akan sangat berpengaruh pada pelayanan ke konsumen. Ketika dihadapkan pada beberapa alternatif *supplier* yang harus dipertimbangkan sebelum melakukan pembelian, dibutuhkan sebuah sistem atau metode yang tidak hanya memprioritaskan subyektifitas, melainkan menggunakan data sebagai acuan dalam memilih supplier, sehingga hasil pemilihan bisa lebih efektif dan akurat [3].


Sistem Pendukung Keputusan (SPK) diharapkan dapat menyelesaikan permasalahan di atas sehingga dapat mempermudah proses pemilihan *supplier*. Dalam proses pengambilan keputusan pemilihan *supplier*, terdapat beberapa kriteria yang dipertimbangkan meliputi kualitas barang, waktu pengiriman, harga produk dan pelayanan. Terdapat banyak pilihan *supplier* dengan variasi harga yang berbeda. Salah satu *supplier* mungkin menawarkan harga yang lebih rendah tetapi dengan kualitas yang di bawah standar, sementara

supplier lain menawarkan produk dengan kualitas yang baik namun dengan harga yang lebih tinggi. SPK dapat menghasilkan keputusan akhir sebagai alternatif terbaik yang memenuhi kriteria dengan memecahkan permasalahan atas suatu masalah [4], [5]. Sistem pendukung keputusan merupakan bagian dari sistem informasi berbasis komputer yang digunakan untuk mendukung pengambilan keputusan dalam suatu organisasi atau perusahaan [6]. Salah satu metode yang dapat digunakan untuk pengambilan keputusan adal MABAC. Metode MABAC ini ditemukan oleh Pamucar dan Cirovic. Metode ini digunakan karena jika dibandingkan dengan metode multi-kriteria pengambilan keputusan lainnya seperti SAW, COPRAS, MOORA, TOPSIS dan VI-KOR, metode MABAC menyajikan solusi yang konsisten dan stabil dan dianggap sebagai metode yang ahli dalam mengambil keputusan yang bersifat logis [7]. Metode ini dianggap sebagai metode yang handal untuk pengambilan keputusan yang sifatnya rasional. MABAC memiliki proses komputasi yang sederhana, prosedur yang sistematis, dan logika yang sehat yang mewakili rasional dari pengambilan keputusan manusia. Oleh karena itu, merupakan topik penelitian yang menarik untuk menerapkan MABAC dalam proses pemilihan supplier atau keputusan berdasarkan ranking. MABAC menangani masalah pengambilan keputusan yang kompleks dan tidak pasti dengan menghitung jarak antara setiap alternatif.

Pada penelitian ini sistem pendukung keputusan dengan menggunakan metode MABAC bertujuan untuk mempermudah dalam memilih *supplier* terbaik untuk diprioritaskan menjadi mitra bisnis untuk toko sembako Aishar.

2. METODE

Metodologi penelitian seperti terlihat pada Gambar 1 dimulai dengan mendefinisikan masalah beserta batasan masalahnya. Lalu menentukan tujuan dan manfaat dari penelitian. Setelah itu melakukan studi literatur dan melakukan pengumpulan data yang akan diteliti. Berdasarkan data yang telah terkumpul dilakukan perancangan aplikasi sistem pengambilan keputusan, lalu implementasi dan pengujian aplikasi. Tahap terakhir dilakukan pengambilan kesimpulan.

Gambar 1. Tahapan Penelitian

2.1. Penelitian Terkait

Studi literatur dilakukan untuk mempelajari literatur dan beberapa penelitian terdahulu yang berkaitan dengan sistem pengambilan keputusan, pemilihan *supplier*, dan metode pengambilan keputusan. Penelitian [8]. menyatakan bahwa sistem pengambilan keputusan dapat mengambilkan keputusan secara cepat dan akurat. Selanjutnya penelitian [9]. Mengenai sistem pendukung keputusan pemilihan *supplier* produk ritel dengan metode AHP (*Analytical Hierarchy Process*) menggunakan 5 kriteria yaitu kualitas, harga, pengiriman, pelayanan dan pembayaran untuk pengambilan keputusan. Kriteria yang memiliki prioritas tertinggi adalah kriteria kualitas dengan bobot 0,360.

Penelitian lainnya sistem pendukung keputusan pemilihan *supplier* dengan menggunakan metode SMART pada CV. Hamuas Mandiri menggunakan 4 kriteria yaitu harga, kualitas, waktu pengiriman, dan pelayanan dan menempatkan bobot terbesar pada kriteria harga dengan bobot 0,2857. Hasil dari penelitian ini adalah adanya sistem pendukung keputusan untuk dapat membantu dan memberikan kemudahan bagi perusahaan dalam menentukan *supplier* terbaik dengan standar kriteria yang sesuai dengan perusahaan inginkan [10].

2.2. Metode MABAC

MABAC adalah singkatan dari *Multi Attributive Border Approximation Area Comparison*, merupakan metode perbandingan multikriteria. Metode ini ditemukan oleh Pamucar dan Cirovic. Dibandingkan dengan metode multi-kriteria pengambilan keputusan lainnya seperti SAW, COPRAS, MOORA, TOPSIS dan VI-KOR, metode MABAC menyajikan solusi yang konsisten dan stabil dan dianggap

sebagai metode yang ahli dalam mengambil keputusan yang bersifat logis [11]. MABAC memiliki proses komputasi yang sederhana, prosedur yang sistematis, dan logika yang sehat yang mewakili rasional dari pengambilan keputusan manusia. Asumsi dasar dari metode MABAC tercermin dalam definisi jarak fungsi kriteria dari setiap alternatif yang diamati dari daerah perkiraan perbatasan. Di bagian berikut disajikan prosedur menerapkan metode MABAC, yaitu formulasi matematis, yang terdiri dari 6 langkah: margin ditetapkan sebagai berikut [12]:

Langkah 1: Membentuk matriks keputusan awal (X)

Langkah 2: Normalisasi elemen matriks awal (X)

Langkah 3: Perhitungan elemen matriks tertimbang (V)

Langkah 4: Penentuan matriks area perkiraan perbatasan (G)

Langkah 5: Perhitungan elemen matriks jarak alternatif dari daerah perkiraan perbatasan (Q)

Langkah 6: Perangkingan Alternative

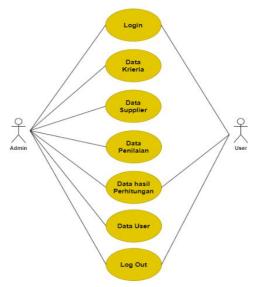
2.3. Pengumpulan Data

Pada penelitian ini digunakan 3 metode pengumpulan data yang diperlukan untuk membuat aplikasi sistem pengambilan keputusan, yaitu :

Studi Literatur

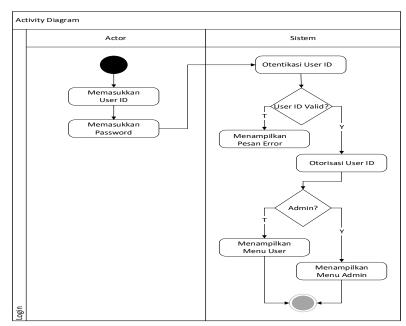
Studi literatur dilakukan dengan mencari informasi yang akurat sesuai dengan judul penelitian ini. Studi dilakukan terhadap beberapa jurnal dan buku untuk mendapatkan informasi yang relevan dalam pembuatan aplikasi sistem pengambilan keputusan dengan menggunakan metode MABAC. Wawancara

Wawancara dilakukan untuk mengetahui kriteria yang dipakai di Toko sembako Aishar dalam pemilihan *supplier*, termasuk pembobotan dari setiap kriteria.


Observasi (Pengamatan)

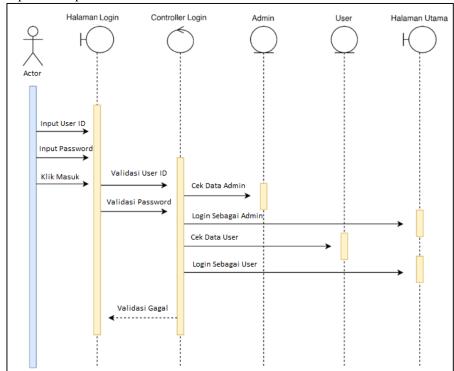
Observasi dilakukan untuk mengamati secara langsung proses pengambilan keputusan yang dilakukan di Toko sembako Aishar dalam pemilihan *supplier*.

Setelah semua data terkumpul selanjutnya dipergunakan untuk melakukan perancangan aplikasi meliputi perancangan flow aplikasi, perancangan antar muka aplikasi, serta perancangan basis data.


2.4. Perancangan Flow Aplikasi

Perancangan flow aplikasi menggunakan UML (Unified Modeling Language) yaitu, use case diagram, activity diagram, dan sequence diagram. Perancangan use case diagram dapat dilihat pada Gambar 2

Gambar 2. Use Case Diagram


Pada Gambar 2 terlihat bahwa *actor* Admin memiliki akses semua *use case* yaitu *Login*, Data Kriteria, Data *Supplier*, Data Penilaian, Data Hasil Perhitungan, Data *User*, dan *Logout*. Sedangkan *actor User* hanya memiliki akses pada *use case Login*, Data Hasil Perhitungan, dan *Logout*. Terdapat beberapa perancangan *activity diagram* pada aplikasi ini. Perancangan *activity diagram* untuk *activity Login* dapat dilihat pada Gambar 3.

Gambar 3. Activity Diagram Login

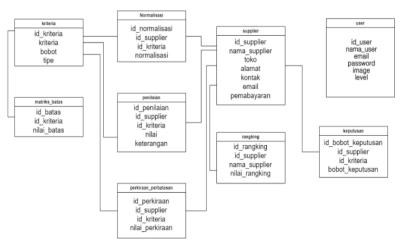
Dimulai dengan *actor* memasukkan *user ID* dan *password*. Lalu sistem melakukan otentikasi. Jika *user ID* tidak valid sistem menampilkan pesan *Error*. Jika *user ID* valid maka sistem melakukan otorisasi apakah *user ID* tersebut Admin. Jika *user ID* merupakan Admin sistem menampilkan menu admin. Jika bukan, sistem menampilkan menu *User*.

Pada aplikasi ini terdapat beberapa *sequence diagram*. Salah satu perancangan *sequence diagram* untuk *Login* dapat dilihat pada Gambar 4.

Gambar 4. Sequence Diagram Login

Diawali dengan *actor* menginput *User ID* lalu menginput *Password* dan klik Masuk. *Controller Login* melakukan validasi *User ID* dan *Password*. Jika tidak valid kembali ke halaman *Login*. Jika *user ID* dan *Password* valid, *controller* melakukan pengecekan apakah *User ID* merupakan Admin atau merupakan *User*, kemudian meneruskan ke halaman utama sesuai dengan hasil pengecekan.

2.5. Perancangan Antar Muka Aplikasi


Perancangan antar muka merupakan gambaran dari sistem agar mempermudah *developer* dalam melakukan implementasi. Gambar 5 adalah rancangan antar muka dari sistem ini.

Gambar 5. Perancangan Antar Muka

2.6. Perancangan Basis Data

Basis data merupakan salah satu bagian penting dari penerapan teknologi informasi. Basis data diartikan sebuah koleksi atau kumpulan data data yang saling berhubungan, disusun menurut aturan tertentu secara logis, sehingga menghasilkan informasi [13]. Gambar 6 menunjukkan perancangan basis data yang dipakai pada penelitian ini.

Gambar 6. Perancangan Basis Data

3. HASIL DAN PEMBAHASAN

Berdasarkan hasil pengumpulan data mengenai kriteria yang dipergunakan untuk melakukan pemilihan *supplier*, terdapat 4 kriteria yaitu kualitas barang, waktu pengiriman, harga produk, dan pelayanan. Berdasarkan hasil wawancara dengan pemilik toko, bobot tertinggi adalah kualitas barang karena kriteria ini akan sangat penting untuk membuat konsumen loyal. Bobot terendah adalah pelayanan karena kriteria ini sebagian besar terkait dengan pemilik toko dan tidak terlalu berpengaruh langsung ke konsumen. Bobot selengkapnya seperti terlihat pada Tabel 1.

Tabel 1. Bobot Kriteria					
Kode Kriteria	Nama Kriteria	Bobot	Jenis		
C1	Kualitas Barang	0,4	Benefit		
C2	Waktu Pengiriman	0,3	Benefit		
C3	Harga Produk	0,2	Benefit		
C4	Pelayanan	0,1	Benefit		

Faktor Exacta, Vol. 18, No. 2, June 2025: 172 - 182

Pada penelitian ini terdapat 5 *supplier* alternatif yang akan dipilih seperti terlihat pada Tabel 2. Aplikasi yang dibangun memiliki fitur untuk mengelola alternatif *supplier* sehingga ketika ada perubahan alternatif akan dapat menggunakan aplikasi.

Tabel 2. Alternatif Supplier

Kode	Nama
Supplier	Supplier
A1	Pak Budi
A2	Pak Zevin
A3	Ibu Ayin
A4	Ibu Sakinah
A5	Pak Putra

3.1. Matriks Keputusan Awal

Setelah *supplier* dimasukkan ke aplikasi kemudian diberikan penilaian untuk masing-masing kriteria. Ketentuan penilaian untuk masing-masing kriteria seperti ditunjukkan pada Tabel 3 sampai dengan Tabel 6.

Tabel 3. Penilaian Kriteria Kualitas Barang

Penilaian	Nilai
Jelek	1
Sedang	2
Sedang Bagus	3

Tabel 4. Penilaian Kriteria Waktu Pengiriman

Penilaian	Nilai	
Lambat	1	
Cepat	2	

Tabel 5. Penilaian Kriteria Harga Produk

Penilaian	Nilai
Mahal	1
Sedang	2
Murah	3

Tabel 6. Penilaian Kriteria Pelayanan

Penilaian	Nilai
Jelek	1
Sedang Bagus	2
Bagus	3

Untuk contoh penilaian masing-masing *supplier* seperti pada Tabel 7 akan dapat dibuat matriks keputusan awal seperti terlihat pada Tabel 8. Jika kedepannya terdapat perbedaan penilaian alternatif masing-masing kriteria dapat dilakukan penyesuaian data melalui aplikasi.

Tabel 7. Penilaian Kriteria Supplier

			·····		
Nome			Kriteria Harga Produk Mahal Bagus		
Nama — Supplier	Kualitas Barang	Waktu Pengiriman		Pelayanan	
Pak Budi	Sedang	Lambat	Mahal	Bagus	
Pak Zevin	Sedang	Cepat	Mahal	Sedang	
Ibu Ayin	Bagus	Cepat	Sedang	Jelek	
Ibu Sakinah	Bagus	Lambat	Sedang	Sedang	
Pak Putra	Sedang	Cepat	Murah	Sedang	

Tabel 8. Matriks Keputusan Awal

Alternatif -			Kriteria	
Aiternatii	C1	C2	C3	C4
A1	2	1	1	3
A2	2	2	1	2
A3	3	2	2	1
A4	3	1	2	2
A5	2	2	3	2

Min	3	1	1	1
Max	2	2	3	3

3.2. Normalisasi Elemen Matriks Keputusan Awal

Selanjutnya terhadap matriks keputusan awal dilakukan normalisasi elemen matriks dengan menggunakan persamaan (1) berikut ini.

$$t_{ij} = \frac{x_{ij}}{x_i^+} - \frac{x_i^-}{x_i^-} \tag{1}$$

Dengan penjelasan:

 t_{ij} adalah hasil normalisasi

 x_{ij} adalah nilai kriteria dari masing-masing alternatif

 x_i^- adalah nilai minimum kriteria

 x_i^+ adalah nilai maksimum kriteria

Contoh perhitungan normalisasi elemen matriks alternatif 1 (Pak Budi) untuk kriteria 1 (Kualitas Barang) adalah sebagai berikut:

$$A_1C_1 = \frac{2-2}{3-2} = \frac{0}{1} = 0$$

Elemen matriks yang lain dihitung dengan cara yang sama sehingga dapat disajikan seperti Tabel 9

Tabel 9. Normalisasi Elemen Matriks Keputusan Awal

Alternatif			Kriteria	
Anernam	C1	C2	С3	C4
A1	0	0	0	1
A2	0	1	0	0,5
A3	1	1	0,5	0
A4	1	0	0,5	0,5
A5	0	1	1	0,5

3.3. Perhitungan Elemen Matriks Tertimbang

Perhitungan elemen matriks tertimbang menggunakan persamaan (2) berikut ini.

$$V_{ij} = (w_i * t_{ij}) + w_i \tag{2}$$

Keterangan masing-masing komponen sebagai berikut:

wi adalah koefisien bobot kriteria

 t_{ij} adalah elemen matriks yang dinormalisasi (N)

Contoh perhitungan elemen matriks tertimbang alternatif 1 (Pak Budi) untuk kriteria 1 (Kualitas Barang), terlihat bahwa koefisien bobot kriteria Kualitas Barang (C1) seperti ditampilkan pada Tabel 1 adalah 0,4 atau sama dengan 40%, maka hasil perhitungan adalah sebagai berikut:

$$A_1C_1 = (40*0) + 40 = 40$$

Elemen matriks yang lain dihitung dengan cara yang sama sehingga dapat disajikan seperti Tabel 10

Tabel 10. Elemen Matriks Tertimbang

				<u> </u>
Alternatif			Kriteria	
Atternatii	C1	C2	C3	C4
A1	40	30	20	20
A2	40	60	20	15
A3	80	60	30	10
A4	80	30	30	15
A5	40	60	40	15

3.4. Perhitungan Matriks Area Perbatasan

Untuk melakukan perhitungan matriks area perbatasan menggunakan persamaan (3) berikut ini.

$$g_i = \left(\prod_{j=1}^m v_{ij}\right)^{1/m} \tag{3}$$

Keterangan masing-masing komponen sebagai berikut:

 V_{ij} : komponen matriks berbobot (V)

m: total alternatif.

Jumlah alternatif dalam penelitian ini adalah 5. Maka komponen 1/m memperoleh hasil 0,2. Setelah melakukan perhitungan nilai-nilai g_i yang didasarkan pada kriteria, dapat dibuat suatu matriks area perbatasan G dengan bentuk n x 1 dengan n adalah total kriteria yang pada penelitian ini bernilai 4.

Contoh perhitungan untuk kriteria elemen C1 (Kualitas Barang) adalah sebagai berikut g_1 = $(40*40*80*80*40)^{0.2}$ = $40.96^{0.2}$ = 52.7803

Dengan cara yang sama, elmen matriks yang lain dapat dihitung sehingga terbentuk matriks area perkiraan perbatasan (G) sebagai berikut:

 $g_i = [52,7803 \ 45,4715 \ 27,0192 \ 14,6508]$

3.5. Matriks Jarak Alternatif dari Daerah Perkiraan Perbatasan

Perhitungan Matriks Jarak Alternatif dari Daerah Perkiraan Perbatasan (G) dihitung dari Elemen Matriks Tertimbang (V) dan Elemen Matrik Area Perbatasan (Q) dengan menggunakan persamaan (4) berikut ini.

$$G = V - Q \tag{4}$$

Contoh perhitungan untuk kriteria elemen alternatif 1 (Pak Budi) untuk kriteria 1 (Kualitas Barang) adalah sebagai berikut:

$$A_1C_1 = 40 - 52,7803 = -12,7803$$

Dengan cara yang sama, elemen yang lain dapat dihitung dan disajikan seperti pada Tabel 11

Tabel 11. Elemen Matriks Jarak Alternatif dari Daerah Perkiraan Perbatasan

Alternatif			Kriteria	
Alternatii	C1	C2	C3	C4
A1	- 12,7803	- 15,4715	- 7,0192	5,3492
A2	- 1,27803	14,5285	- 7,0192	0,3492
A3	27,2197	14,5285	2,9808	- 4,6508
A4	27,2197	- 154715	2,9808	0, 3492
A5	-12,7803	14,5285	129808	0, 3492

3.6. Perangkingan Alternatif

Pada proses perangkingan alternatif, kriteria dari masing-masing alternatif dijumlahkan untuk mendapatkan skor dengan menggunakan persamaan (5) berikut ini.

$$S_i = \sum_{j=1}^n q_{ij}, j = 1, 2, 3, ..., n, i = 1, 2, ..., m$$
 (5)

Contoh perhitungan skor untuk alternatif A1 (Pak Budi) sebagai berikut:

$$A1 = -12,7803 + -15,4715 + -7,0192 + 5,3492 = -29,9218$$

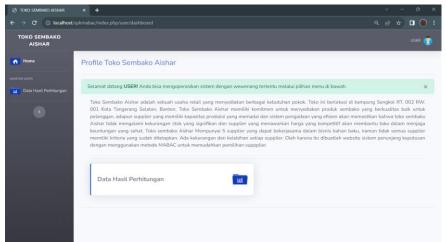
Dengan cara yang sama, skor untuk altermatif lain dapat dilakukan perhitungan dan dapat disajikan seperti pada Tabel 12

Tabel 12. Hasil Perangkingan Alternatif

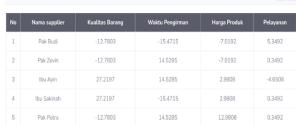
Alternatif	Skor	Ranking
A1	- 29,9218	5
A2	- 4,9218	4
A3	40,0782	1
A4	15,0782	2
A5	15,0782	3

Dengan demikian maka ranking tertinggi untuk alternatif *supplier* ini adalah alternatif A3 yaitu *supplier* Ibu Ayin dengan skor 40,0782.

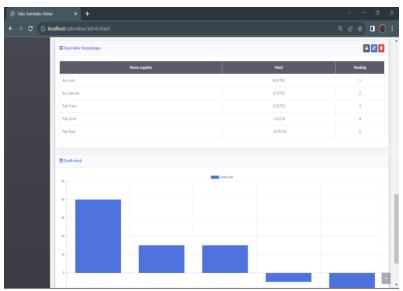
3.7. Implementasi Aplikasi


Implementasi aplikasi dilakukan pada perangkat keras laptop dengan menggunakan bahasa pemrograman PHP dan *database* MySQL pada sistem operasi Windows 10. Aplikasi dibangun berbasis website dan dideploy pada server XAMPP. Akses terhadap aplikasi melalui web browser seperti Microsoft Edge, Google Chrome atau Mozilla Firefox. Tampilan aplikasi yang telah diimplementasikan dapat dilihat pada Gambar 7 sampai dengan Gambar 13. Output aplikasi menunjukkan hasil perhitungan yang sama dengan perhitungan manual pada Tabel 3 hingga Tabel 7.

Gambar 7. Halaman Login


Gambar 8. Menu Utama Admin

Gambar 9. Menu Utama User



Gambar 11. Matriks Normalisasi Keputusan Awal

Gambar 12. Matriks Jarak Alternatif Daerah Perkiraan Perbatasan

Gambar 13. Hasil Perangkingan

3.8. Pengujian Sistem

Pengujian sistem ini memiliki manfaat penting dalam memverifikasi kinerja sistem yang telah diimplementasikan. Tujuannya adalah untuk memastikan bahwa semua elemen dan komponen sistem beroperasi sesuai dengan harapan yang telah ditetapkan. Metode pengujian yang digunakan adalah *blackbox testing* dengan fokus pada fungsi dan fitur yang terlihat oleh pengguna. Hasil pengujian menunjukkan bahwa semua skenario sudah sesuai seperti disajikan pada Tabel 13.

Tabel 13. Hasil Pengujian Aplikasi

No	Skenario	Hasil yang Diharapkan	Hasil Pengujian
1	Tampilan <i>Login</i>	Dapat menampilkan halaman website berupa form login	Sesuai
2	Login sebagai Admin dengan User ID dan Password benar	Dapat login ke sistem dengan level admin	Sesuai
3	Login Sebagai User dengan User ID dan Password benar	Dapat login ke sistem dengan level user	Sesuai
4	Login dengan User ID atau Password salah	Tidak dapat <i>login</i> ke sistem serta memberikan Informasi bahwa <i>username</i> dan <i>password</i> salah	Sesuai
5	Menambahkan pengguna aplikasi	Pengguna aplikasi dapat ditambahkan	Sesuai
6	Mengubah pengguna aplikasi	Pengguna aplikasi berhasil diubah	Sesuai
7	Menghapus pengguna aplikasi	Pengguna aplikasi berhasil dihapus	Sesuai
8	Menambahkan kriteria penilaian	Kriteria penilaian dapat ditambahkan	Sesuai
9	Mengubah kriteria penilaian	Kriteria penilaian berhasil diubah	Sesuai
10	Menghapus kriteria penilaian	Kriteria penilaian berhasil dihapus	Sesuai
11	Menambahkan supplier	Supplier dapat ditambahkan	Sesuai
12	Mengubah supplier	Supplier berhasil diubah	Sesuai
13	Menghapus supplier	Supplier berhasil dihapus	Sesuai
14	Menambah penilaian supplier	Penilaian <i>supplier</i> dapat ditambahkan	Sesuai
15	Mengubah penilaian supplier	Penilaian supplier diubah	Sesuai
16	Menghapus penilaian supplier	Penilaian <i>supplier</i> dihapus	Sesuai

17	Perhitungan	Hasil perhitungan sesuai dengan perhitungan	Sesuai
		manual	
18	Cetal Hasil	Hasil perhitungan tercetak dengan benar	Sesuai
19	Logout	Berhasil keluar dari aplikasi	Sesuai

PENUTUP

Aplikasi sistem penunjang keputusan berbasis website dengan metode MABAC mampu menghasilkan keputusan yang cepat dan akurat dibandingkan dengan keputusan manual tradisional. Sistem ini dapat membantu pemilik toko sembako Aishar dalam mengambil keputusan penentuan *supplier* bahan baku berdasarkan kriteria yang ditentukan. Contoh yang dipakai pada penelitian ini melakukan pemilihan lima *supplier* dengan empat kriteria. Setelah dilakukan penilaian kriteria terhadap masing-masing *supplier* dapat dipilih *supplier* alternatif A3 yaitu *supplier* Ibu Ayin dengan skor 40,0782. Aplikasi ini dapat dikembangkan dalam bentuk aplikasi mobile sehingga lebih mudah dipakai dan dapat diakses kapan saja dan dimana saja selama tersedia koneksi internet.

DAFTAR PUSTAKA

- [1] Y. Helianty and D. Anggraeni, "Pemilihan Supplier Bahan Baku Untuk Meminimumkan Biaya Dengan Menggunakan Metode Analytical Hierarchy Process Dan Taguchi Loss Function," *Ina. J. Ind. Qual. Eng.*, vol. 9, no. 1, pp. 97–107, 2021.
- [2] R. Alvira and R. Rusdah, "Sistem Penunjang Keputusan Pemilihan Supplier Bahan Baku Kertas Dengan Metode QCDFR dan Analytical Hierarchy Process: Studi Kasus CV. Asaka Prima," *IDEALIS*, vol. 3, no. 1, pp. 241–246, 2020.
- [3] S. Proboningrum and A. Sidauruk, "Sistem Pendukung Keputusan Pemilihan Supplier Kain Dengan Metode MOORA," *JSiI (Jurnal Sist. Informasi)*, vol. 8, no. 1, pp. 43–48, 2021.
- [4] R. T. Aldisa, "Penerapan Metode MABAC dalam Sistem Pendukung Keputusan Rekomendasi Aplikasi Pemesanan Hotel Terbaik," *J. Inf. Syst. Res.*, vol. 4, no. 1, pp. 191–201, 2022.
- [5] M. R. Raynaldi, P. Irfansyah, and M. Lestari, "Sistem Pendukung Keputusan Pemilihan Rumah Terbaik dengan Metode Weighted Product," *DoubleClick J. Comput. Inf. Technol.*, vol. 7, no. 2, pp. 95–100, 2024.
- [6] T. Tugiono, H. Hafizah, and K. Nisa, "Optimalisasi Metode MABAC Dalam Menentukan Prioritas Penerima Pinjaman Koperasi," *J. Teknol. Sist. Inf. dan Sist. Komput. TGD*, vol. 5, no. 2, pp. 280–292, 2022.
- [7] E. P. Rachmawati, R. Saifur, Cholil, and S. Asmiatun, "Sistem Pendukung Keputusan Pemberian Reward dan Punishment pada Perusahaan Makanan Menggunakan Metode MABAC," *J. Rekayasa Sist. Ind.*, vol. 9, no. 2, pp. 79–87, 2023.
- [8] D. Nofriansyah, "Application to Determination of Scholarship Worthiness Using Simple Multi Attribute Rating Technique and Merkle Hellman Method," *Int. J. Artif. Intell. Res.*, vol. 1, no. 2, pp. 40–49, 2017.
- [9] F. M. U. Hasiani, T. Haryanti, R. Rinawati, and L. Kurniawati, "Sistem Pendukung Keputusan Pemilihan Supplier Produk Ritel dengan Metode Analytical Hierarchy Process," *Sist. J. Sist. Inf.*, vol. 10, no. 1, pp. 152–162, 2021.
- [10] M. N. Amalia and M. Ary, "Sistem Pendukung Keputusan Pemilihan Supplier Dengan Menggunakan SMART Pada CV. Hamuas Mandiri," *J. Sains dan Inform.*, vol. 7, no. 2, pp. 127–134, 2021.
- [11] R. K. Hondro, "MABAC: Pemilihan Penerima Bantuan Rastra Menggunakan Metode Multi-Attributive Border Approximation Area Comparison," *J. Mahajana Inf.*, vol. 3, no. 1, pp. 41–52, 2018.
 [12] N. Ndruru, M. Mesran, F. T. Waruwu, and D. P. Utomo, "Penerapan Metode MABAC Untuk
- [12] N. Ndruru, M. Mesran, F. T. Waruwu, and D. P. Utomo, "Penerapan Metode MABAC Untuk Mendukung Pengambilan Keputusan Pemilihan Kepala Cabang Pada PT. Cefa Indonesia Sejahtera Lestari," *Resolusi Rekayasa Tek. Inform. dan Inf.*, vol. 1, no. 1, pp. 36–49, 2020.
- [13] I. M. S. Ardana and Y. M. Djaksana, "Perancangan Basis Data Kawasan Suci Danau Tamblingan dengan Menerapkan Model Data Relasional," *J. Syntax Admiration*, vol. 4, no. 10, pp. 1598–1612, 2023.